13 research outputs found

    Behavioral Diversity with Multiple Behavioral Distances

    No full text
    Abstract—Recent results in evolutionary robotics show that explicitly encouraging the behavioral diversity of candidate solutions drastically improves the convergence of many experiments. The performance of this technique depends, however, on the choice of a behavioral similarity measure (BSM). Here we propose that the experimenter does not actually need to choose: provided that several similarity measures are conceivable, using them all could lead to better results than choosing a single one. Values computed by several BSM can be averaged, which is computationally expensive because it requires the computation of all the BSM at each generation, or randomly switched at a user-chosen frequency, which is a cheaper alternative. We compare these two approaches in two experimental setups – a ball collecting task and hexapod locomotion – with five different BSMs. Results show that (1) using several BSM in a single run increases the performance while avoiding the need to choose the most appropriate BSM and (2) switching between BSMs leads to better results than taking the mean behavioral diversity, while requiring less computational power. I

    Beyond black-box optimization: a review of selective pressures for evolutionary robotics

    No full text
    International audienceEvolutionary robotics is often viewed as the application of a family of black-box optimization algorithms -- evolutionary algorithms -- to the design of robots, or parts of robots. When considering evolutionary robotics as black-box optimization, the selective pressure is mainly driven by a user-defined, black-box fitness function, and a domain-independent selection procedure. However, most evolutionary robotics experiments face similar challenges in similar setups: the selective pressure, and, in particular, the fitness function, is not a pure user-defined black box. The present review shows that, because evolutionary robotics experiments share common features, selective pressures for evolutionary robotics are a subject of research on their own. The literature has been split into two categories: goal refiners, aimed at changing the definition of a good solution, and process helpers, designed to help the search process. Two sub-categories are further considered: task-specific approaches, which require knowledge on how to solve the task and task-agnostic ones, which do not need it. Besides highlighting the diversity of the approaches and their respective goals, the present review shows that many task-agnostic process helpers have been proposed during the last years, thus bringing us closer to the goal of a fully automated robot behavior design process

    Evolutionary robotics: what, why, and where to

    Get PDF
    International audienceEvolutionary robotics applies the selection, variation, and heredity principles of natural evolution to the design of robots with embodied intelligence. It can be considered as a subfield of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evolutionary approach is that it considers the whole robot at once, and enables the exploitation of robot features in a holistic manner. Evolutionary robotics can also be seen as an innovative approach to the study of evolution based on a new kind of experimentalism. The use of robots as a substrate can help to address questions that are difficult, if not impossible, to investigate through computer simulations or biological studies. In this paper, we consider the main achievements of evolutionary robotics, focusing particularly on its contributions to both engineering and biology. We briefly elaborate on methodological issues, review some of the most interesting findings, and discuss important open issues and promising avenues for future work

    Evo-devo-robo workshop program

    No full text
    Doncieux S, Jin Y, Mouret J-B, Moore JH. Evo-devo-robo workshop program. In: Soule T, ed. Proceedings of the 14th annual conference companion on Genetic and evolutionary computation. New York, NY, USA: ACM; 2012: 355-356.Developmental robotics (also known as epigenetic robotics) is mainly concerned with modeling the postnatal development of cognitive behaviors in living systems, such as language, emotion, curiosity, anticipation, and social skills. While current work in this field has shown significant successes, we believe integrating research on developmental (including epigenetic and morphogenetic) robotics and evolutionary robotics is the natural next step. This workshop aims at bringing together evolutionary robotics and developmental robotics to form a new research area "evolutionary developmental robotics" (evo-devo-robo). The present paper contains the abstracts of the talks given by each of the seven invited speakers. These abstracts cover research in both fields and give an overview of the potential interactions between developmental and evolutionary robotics

    Unrepaired cyclobutane pyrimidine dimers do not prevent proliferation of UV-B-irradiated cultured human fibroblasts.

    No full text
    International audienceMutagenic and carcinogenic UV-B radiation is known to damage DNA mostly through the formation of bipyrimidine photoproducts, including cyclobutane dimers (CPD) and (6-4) photoproducts ((6-4) PP). Using high-performance liquid chromatography coupled to tandem mass spectrometry, we investigated the formation and repair of thymine-thymine (TT) and thymine-cytosine (TC) CPD and (6-4) PP in the DNA of cultured human dermal fibroblasts. A major observation was that the rate of repair of the photoproducts did not depend on the identity of the modified pyrimidines. In addition, removal of CPD was found to significantly decrease with increasing applied UV-B dose, whereas (6-4) PP were efficiently repaired within less than 24 h, irrespective of the dose. As a result, a relatively large amount of CPD remained in the genome 48 h after the irradiation. Because the overall applied doses (<500 J m(-2)) were chosen to induce moderate cytotoxicity, fibroblasts could recover their proliferation capacities after transitory cell cycle arrest, as shown by 5-bromo-2'-deoxyuridine (BrdUrd) incorporation and flow cytometry analysis. It could thus be concluded that UV-B-irradiated cultured primary human fibroblasts normally proliferate 48 h after irradiation despite the presence of high levels of CPD in their genome. These observations emphasize the role of CPD in the mutagenic effects of UV-B

    The melanoma tumor glyco-code impacts human dendritic cells’ functionality and dictates clinical outcomes

    No full text
    International audienceSubversion of immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells triggering anti-tumor immune responses, but tumor cells exploit their versatility to subvert their functions. Tumor cells harbor unusual glycosylation patterns, which can be sensed through glycan-binding receptors (lectins) expressed by immune cells that are crucial for DCs to shape and orientate antitumor immunity. Yet, the global tumor glyco-code and its impact on immunity has not been explored in melanoma. To decrypt the potential link between aberrant glycosylation patterns and immune evasion in melanoma, we investigated the melanoma tumor glyco-code through the GLYcoPROFILEℱ methodology (lectin arrays), and depicted its impact on patients’ clinical outcome and DC subsets’ functionality. Specific glycan patterns correlated with clinical outcome of melanoma patients, GlcNAc, NeuAc, TF-Ag and Fuc motifs being associated with poor outcome, whereas Man and Glc residues elicited better survival. Strikingly, tumor cells differentially impacting cytokine production by DCs harbored distinct glyco-profiles. GlcNAc exhibited a negative influence on cDC2s, whereas Fuc and Gal displayed inhibitory impacts on cDC1s and pDCs. We further identified potential booster glycans for cDC1s and pDCs. Targeting specific glycans on melanoma tumor cells restored DCs’ functionality. The tumor glyco-code was also linked to the nature of the immune infiltrate. This study unveils the impact of melanoma glycan patterns on immunity, and paves the way for innovative therapeutic options. Glycans/lectins interactions arise as promising immune checkpoints to rescue DCs from tumor’ hijacking to reshape antitumor immunity and inhibit immunosuppressive circuits triggered by aberrant tumor glycosylation

    Time course of skin features and inflammatory biomarkers after liquid sulfur mustard exposure in SKH-1 hairless mice

    No full text
    International audienceSulfur mustard (SM) is a strong bifunctional alkylating agent that produces severe tissue injuries characterized by erythema, edema, subepidermal blisters and a delayed inflammatory response after cutaneous exposure. However, despite its long history, SM remains a threat because of the lack of effective medical countermeasures as the molecular mechanisms of these events remain unclear. This limited number of therapeutic options results in part of an absence of appropriate animal models. We propose here to use SKH-1 hairless mouse as the appropriate model for the design of therapeutic strategies against SM-induced skin toxicity. In the present study particular emphasis was placed on histopathological changes associated with inflammatory responses after topical exposure of dorsal skin to three different doses of SM (0.6, 6 and 60 mg/kg) corresponding to a superficial, a second-degree and a third-degree burn. Firstly, clinical evaluation of SM-induced skin lesions using non invasive bioengineering methods showed that erythema and impairment of skin barrier increased in a dose-dependent manner. Histological evaluation of skin sections exposed to SM revealed that the time to onset and the severity of symptoms including disorganization of epidermal basal cells, number of pyknotic nuclei, activation of mast cells and neutrophils dermal invasion were dose-dependent. These histopathological changes were associated with a dose-and time-dependent increase in expression of specific mRNA for inflammatory mediators such as interleukins (IL1 beta and IL6), tumor necrosis factor (TNF)-alpha, cycloxygenase-2 (COX-2), macrophage inflammatory proteins (MIP-1 alpha, MIP-2 and MIP-1 alpha R) and keratinocyte chemoattractant (KC also called CXCL1) as well as adhesion molecules (L-selectin and vascular cell adhesion molecule (VCAM)) and growth factor (granulocyte colony-stimulating factor (Csf3)). A dose-dependent increase was also noted after SM exposure for mRNA of matrix metalloproteinases (MMP9) and laminin-gamma 2 which are associated with SM-induced blisters formation. Taken together, our results show that SM-induced skin histopathological changes related to inflammation is similar in SKH-1 hairless mice and humans. SKH-1 mouse is thus a reliable animal model for investigating the SM-induced skin toxicity and to develop efficient treatment against SM-induced inflammatory skin lesions. (C) 2014 Elsevier Ireland Ltd. All rights reserved
    corecore